If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=46
We move all terms to the left:
7x^2-(46)=0
a = 7; b = 0; c = -46;
Δ = b2-4ac
Δ = 02-4·7·(-46)
Δ = 1288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1288}=\sqrt{4*322}=\sqrt{4}*\sqrt{322}=2\sqrt{322}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{322}}{2*7}=\frac{0-2\sqrt{322}}{14} =-\frac{2\sqrt{322}}{14} =-\frac{\sqrt{322}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{322}}{2*7}=\frac{0+2\sqrt{322}}{14} =\frac{2\sqrt{322}}{14} =\frac{\sqrt{322}}{7} $
| -2x+3x-20x+18x=2 | | 16c+2c-10c=16 | | (4x+3)/(5)=(7x-3)/(6) | | -14j-(-12j)=(-18) | | 2x+4x=170 | | 8b-3b-5b+2b=18 | | -12a-16a+(-14a)-(-19a)+6a=(-7) | | 10-9x^2=-71 | | 16=10(x-2)+6 | | 9=21+6x | | 6w=4.618 | | 4x^2=-5x+51 | | -4x-27=-12 | | 6/2x=3/5 | | 0.5^x=1.5 | | n+2n+2n=5 | | 9x-2=2(2x-3) | | 10x+5=3-10x+2 | | .4x+3=2x+17 | | 4x+6x+10-16=24 | | 3g+g-4g+4g+4g=16 | | 2(x+6)=2(2x+4)* | | 2x-6x-5=11 | | 7x+2=12-x | | 2x+1=2x-1* | | 3u-3u+2u=8 | | x+4.5=6.4 | | 16k-15k+3k+k=15 | | 39.2=p•122 | | 7h+8=25 | | (4/7)p=16 | | (x+3)^2=75 |